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ABSTRACT 

This paper presents a study of FFT-implemented circular 
correlation and its application to fast direct acquisition of 
GPS codes. This includes the periodic C/A-codes, 
practically non-periodic P(Y)-codes, never-repeating 
cryptographic M-code, and puncture acquisition (PA) 
codes which have been proposed to aid direct M 
acquisition as well as overlaid codes which are created by 
surface-reflected GPS signals extended beyond one code 
chip. FFT operates on blocks of incoming and replica 
code samples, thus providing simultaneous search over 
the entire block of code phases. It is straightforward to 
work with periodic codes for circular correlation. 
However, it is not obvious for puncture codes and long 
codes in particular. One major concern is how to ensure 
that the incoming and replica code samples contained 
within the working block could be correlated. In addition, 
it is quite possible that the data bit sign may reverse in the 
middle of an integration interval. Furthermore, how to 
efficiently make use of complex FFT when the data 
length is not a power of two or highly composite is 
critical for practical implementation. These design and 
computation issues are properly formulated in this paper 
and pertinent acquisition schemes are suggested. 
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INTRODUCTION 

At the heart of a GPS receiver is the correlation 
performed between a segment of the incoming signal 
samples and a locally generated code replica. A 
successful correlation identifies the particular GPS 
satellite from which the signal originates while rejecting 
all other codes present at the same time. The correlation 
integration, acting as a matched filter with a large 
processing gain, de-spreads the signal and produces an 
enhanced signal to noise ratio (SNR) at the output for 
detection, delay and Doppler error discrimination, and 
navigation message data bit extraction. Reviews of GPS 
technology and its applications can be found in 
[Parkinson and Spilker, 1996; Kaplan, 1996]. 

In most GPS receivers, code correlation is implemented in 
the form of a digital correlator or a matched filter made 
up of basic logic circuits such as an XOR (exclusive-or) 
gate followed by an adder (integrate and dump), where 
the signal is quantized into one bit or two. Though being 
simple, the operation of a time-domain hardware 
correlator cannot run faster than the rate at which the 
signal samples arrive. Although a block of signal samples 
is integrated per correlation, only one code phase is tested 
each time, unless numerous hardware correlators are put 
in parallel, each assigned to a different code phase. 

There has been a growing interest in software GPS 
receivers for flexibility gained from programmability. In 
most software GPS receiver designs, the code correlation 
is implemented via Fast Fourier Transform (FFT) [van 
Nee and Coenen, 1991]. Actually, FFT can be employed 
not only as a fast means to calculate the correlation 
function but also as a tool to perform domain conversions 
from time to frequency and vice versa. Once in the 
frequency domain, the incoming signal spectrum can be 



scrutinized for detection and suppression of narrowband 
interference [Peterson et al., 1996] and for simple 
translation to the baseband with Doppler removed in the 
process [Yang, Vasquez, and Chaffee, 1999a]. A selective 
processing can also be applied to a portion of the signal 
spectrum of interest, be it the upper sideband, lower 
sideband or both of the split-spectrum of the proposed 
GPS modernization signal. 

This paper presents a study of FFT-implemented circular 
correlation and its application to fast direct acquisition of 
GPS codes. This includes the periodic C/A-codes, 
practically non-periodic P(Y)-codes, never-repeating 
cryptographic M-code, and puncture acquisition codes 
which have been proposed to aid direct M acquisition 
[Barker et al., 2000]] as well as overlaid codes which are 
created by surface-reflected GPS signals extended beyond 
one code chip [Yang, Muskat, and Garrison, 2000].  

Operating on blocks of incoming and replica code 
samples, FFT thus provides simultaneous search over the 
entire block of code phases. It is straightforward to work 
with periodic codes for circular correlation. However, it is 
not obvious for puncture and particularly long code 
sequences. One issue is to ensure that the incoming and 
replica code samples contained within the working block 
could be correlated. In addition, it is quite possible that 
the data bit sign may reverse in the middle of an 
integration interval. Furthermore, it is critical to 
implement a complex FFT when the data length is not a 
power of two or highly composite.  

To address these computation and design issues, the paper 
is organized as follows. First, linear and circular 
correlations are described with emphasis placed on their 
differences as implemented by FFT. Computational issues 
such as sampling rate, commensurability ratio, zero 
padding, and complex FFT are then discussed. The paper 
next focuses on FFT acquisition of periodic and aperiodic 
codes with four algorithms outlined. It then analyzes FFT 
acquisition of puncture and overlaid codes. Finally, 
concluding remarks are provided with a summary. 

LINEAR VS CIRCULAR CORRELATION 

Given two sequences of data points of length N, they will 
be successively shifted relative to each other to produce 
the values of their entire cross correlation function. There 
are two different ways to conduct the shifting, leading to 
either a linear or circular correlation accordingly. 

In the linear correlation, the second sequence is shifted 
with respected to the first and zero-padded or truncated 
wherever the sequences do not line up. To illustrate, two 
sequences represented by the rectangles A and B are 
shown in Figure 1(a). The resulting linear correlation 
function, being the overlapped area, has a support of 
length 2N-1. 
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In the circular correlation, however, the second sequence 
is time-reversed circularly shifted with respect to the first, 
as shown in Figure 1(b), where two pseudo random 
number (PRN) sequences are represented by the triangles 
with the height to indicate the phase. It is important to 
note that the resulting circular correlation function has a 
support of length N.  

FFT operates on a block of samples of length N and 
implicitly assumes that the signal is of periodicity of N. 
Because of this, FFT-implemented convolution or 
correlation is circular in nature. If non-periodic finite 
signals are of interest, extra care has to be given to the use 
of FFT for linear convolution or correlation. Otherwise, 
there will be a time-aliasing due to undersampling of the 
correlation function [Kunt, 1986]. To perform linear 
correlation with FFT, both the sequences have to be zero-
padded to at least a length of 2N-1. 

This is consistent with periodic C/A codes when the 
correlation interval is the code epoch of 1ms. In fact, the 
correlation between two periodic sequences over one 
period, even implemented in a linear manner, is circular 
and it is straightforward to apply FFT.  

However, there are a number of circumstances where one 
actually faces the problem of linear correlation and it has 
to be converted into a circular one in order to benefit from 
the fast computations offered by FFT. This aspect will be 
further addressed in the subsequent sections.  
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Figure 1. Linear vs. Circular Correlation 

SAMPLING RATE AND ZERO-PADDING 

Modern GPS receivers digitize the analog GPS signal at a 
suitable sampling rate with a suitable number of 
quantization levels. For a binary sequence with 
rectangular waveform at a chipping rate of fc (chip per sec 
or cps), its fundamental frequency is fc/2 (Hz) whereas the 
first null of its spectrum is at fc (Hz). Since the signal may 
be band-limited by the receiver front-end within its first 
nulls, the Nyquist sampling rate is taken as fs > 2fc. 



In practice, however, a sampling rate much higher than 
this minimum Nyquist rate is typically used. Its selection 
is determined by both the last stage analog IF frequency 
and the initial digital IF frequency. The former is related to 
the analog front-end down-conversion frequency plan 
design while the latter entails many considerations. An 
oversampling allows for pipelined matched filters with 
closely spaced correlations to operate for rapid acquisition. 
It may also be necessary in order to apply well-behaved 
digital filters in order to relax requirements on front-end 
analog filters, which are more expensive for stable 
operation over a large range of environmental conditions. 

For an FFT-implemented correlation, the sampling rate 
not only determines the size of each FFT per operation 
block (so is the computational burden) but also the 
resolution of the correlation function at the FFT output as 
well as the theoretic accuracy of code matching. 

In a conventional hardware implementation, how many 
times (typically three, known as the early, prompt, and late 
correlators) and where (around the correlation peak) the 
underlying correlation function is evaluated is determined 
by the number of correlators available per channel and the 
code phase spacing between individual correlators. The 
correlator spacing can also be viewed as the resolution at 
which the correlation function is sampled. 

In contrast, the entire correlation function is produced by 
FFT and it has a resolution being the inverse of the 
sampling rate, i.e., 1/fs (or fc/fs in terms of chips). 
Increasing the sampling rate can improve the correlation 
resolution or correlator spacing for a better code tracking 
performance. In addition, a high-resolution correlation 
provided by FFT can be used to drive a multipath 
estimator for multipath mitigation. However, this 
inevitably increases the computational burden of FFT per 
operation block. 

The accuracy of code matching, that is, how closely the 
chip transitions of two code sequences can be aligned 
together without ambiguity, is also determined by the 
sampling rate in relationship to the chipping ratio, known 
as the commensurability ratio [Thomas, 1988]: 
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f
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where ns and nc are integers with all common factors 
cancelled (relative prime). 

The commensurability ratio indicates that over an exact 
amount of nc code chips, an exact amount of ns samples 
can be taken. If all these nc chips are piled up on top one 
another with the leading edges to leading edges and 
trailing edges to trailing edges, the corresponding 
sampling points fall onto the piled chips with a spacing of 
nc/ns of a chip. If either the samples or the code chips are 
moved in one direction or the other by this amount, the  
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resulting correlation between the two will not change. 
This is an ambiguity in code matching due to discrete 
sampling and is also the lower bound in accuracy one can 
expect [Yang, 1996]. In practice, however, the 
commensurability is not constant due to the Doppler 
frequency shifting in the incoming signal and the 
instability in the local sampling clock. 

Without constraint, it is ideal to select such a sampling 
rate that the number of data points in an FFT interval is a 
power of two or four to attain the maximum efficiency of 
FFT or highly factorable so that a mixed radix FFT can be 
applied. If neither is possible, one has to implement an 
FFT-based correlation at an arbitrary sampling rate. 

At a first glance, one may be able to apply a radix-2 FFT 
to an arbitrary data sequence padded with zeros to its 
nearest power of two or four. This technique seems to 
work when the number of padded zeros is small and that 
the two sequences are almost aligned as in the tracking 
mode, as illustrated in Figures 2(a) and 2(b) for head and 
tail matches, respectively. 

However, the zero padding to a power of two or four may 
create partial correlation with reduced SNR, depending on 
where either sequence starts. This is illustrated in Figure 
2(c) for a partial match case with two ambiguous peaks.  
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Figure 2. Single Length Zero-Padding FFT 

When one has to deal with an arbitrary sampling rate that 
results in a not-highly-factorable number of data points 
per FFT, the technique by [Stockham, 1966] can be 
applied as the last resort rather than the brute force DFT. 

The technique employs the idea that new data sequences 
are constructed to a power of two in length and their 
circular correlation with FFT is produced without  



degradation. This is shown in Figure 3, where the length 
of the new sequences is the smallest power of two above 
2N-1 as 

N1 = (2n)min ≥ 2N-1  for an integer n (2) 

The circular correlation over the extended sequence N1 
may produce multiple peaks. However, if the circular 
correlation is restricted to the first N shifts, the resulting 
values are unique and are what we are actually looking 
for. This restriction eliminates the computations otherwise 
wasted for the unnecessary shifts. 

The same procedure can be modified to perform a linear 
correlation by FFT in which two N-sequences are zero-
padded to N1 as given in Eq. (2) without placing the 
duplicated replica code from N1-N+1 to N1 
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Figure 3. Double-Length Zero-Padding FFT 
(Method 1: Circular Correlation at Arbitrary Length) 

COMPLEX FFT 

Inside Fourier transform are complex operations involved 
(multiplications and additions), although it can be 
decomposed into a pair of real sine and cosine transforms. 
As a result, an FFT operating on complex data is more 
efficient than on real data of the same length. It is always 
recommended to work with complex FFT applied to 
complex data. 

When only real data are at hand, the following steps can 
be taken to reduce the overall computations. First, one can 
pair two real sequences, say, x(n) and y(n), into a 
complex one as z(n) = x(n) + jy(n). Then apply the 
complex FFT to the complex sequence as Z[k] = 
FFT{z(n)}. Finally recover the respective spectra for the 
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real sequences X[k] = FFT{x(n)} and Y[k] = FFT{y(n)} 
from the complex sequence spectrum Z[k]. The complete 
procedure can be found in [Smith and Smith, 1995]. 

In GPS applications, unless the incoming signal and the 
local replica are made complex in the frequency down 
and up translation processes [Yang 2000], they are real in 
nature. Nevertheless, there are at least two ways to make 
use of complex FFT for their processing. The first way is 
to pair two consecutive segments of the incoming 
samples, padded with zeros if necessary, into a complex 
segment, as illustrated in Figure 4. The other way is to 
pair one segment of incoming samples with one segment 
of code replica into a complex one and then to follow the 
process depicted in Figure 4.  
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Figure 4. Complex FFT on Pair of Real Sequences 

PERIODIC CODES 

By design, the GPS coarse acquisition (C/A) codes are 
short in duration (1023 chips over 1ms), of relatively low 
chipping rate (1.023Mcps), and repetitive (every 1ms). 
This makes C/A codes suitable for direct search 
acquisition and it is so implemented in almost every GPS 
receiver today. 

With hardware correlators, the incoming signal samples 
are correlated, for each integration interval, with a local 
set of replica samples whose starting sample is 
sequentially displaced by a certain amount (typically half 
chip a time) across the timing uncertainty interval to look 
for a match. The actual operation, though being linear in 
implementation, behaves as if it is circular when the 
integration interval is about one C/A code epoch because 
of the periodicity. 

This periodicity also makes the circular correlation of 
FFT directly applicable to C/A codes on an epoch-to-
epoch basis. According to the signal specs, the 1ms 
integration of C/A codes should provide the necessary 
processing gain for a correct detection, which may be 
further cumulated over time for better estimation. In 
preparation of the local replica for circular correlation 
0



with FFT in each epoch, it is important to sample the local 
replica from the very beginning. This is because this 1ms 
boundary can be the 20ms boundary (i.e., the navigation 
data bit) and can also be the 1s boundary, all needed for 
later data sync and other timing purposes. 

 Without knowing the 1ms boundary in the search mode, 
it is quite possible that a data bit sign may reverse itself 
within a correlation window (once every 20ms at most). If 
it happens, it can reduce the correlation peak and in the 
worst case even destroy an otherwise perfect correlation. 
As shown in Figure 5, the data bit sign reversal within a 
correlation window makes it no longer periodic. By 
consequence, the 1ms circular correlation cannot be used 
alone to decide the absence of a signal.  
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Figure 5. Double-Length Zero-Padding FFT 

(Method 2: Linear Correlation at Arbitrary Length) 

Two solutions are available to this problem. One is to 
conduct at least two 1ms circular correlations before 
deciding the absence of a particular code of interest in the 
signal. The other is to conduct a 2ms linear correlation as 
shown in Figure 5. 

For the case shown in Figure 5, if the circular correlation 
by FFT is carried out completely, there are three 
correlation peaks. The major peak in the first half of shifts 
(i.e., to delay the replica to align with the incoming 
signal) corresponds to the full correlation, while the two 
minor ones in the second half (i.e., to advance the replica 
to align with the incoming signal) correspond to partial 
correlations. For practical purposes, we are only 
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interested in the first half of shifts. By restricting this 
shifting range, we also reduce the computation load. 

Another advantage of zero padding to double-length as 
shown in Figures 3 and 5 is a finer frequency resolution 
associated with the apparent increase in time interval. It 
thus permits frequency-domain Doppler removal with 
smaller frequency steps [Yang, 2001c; 2001d]. 

Further, the procedure depicted in Figure 5 can be viewed 
as another way to perform a zero-padded FFT for an 
arbitrary sampling rate, alternative to the approach 
described in Figure 3. In the absence of data bits, a third 
way to perform FFT for an arbitrary sampling rate, zero-
padded to a power of two, is to simply switch the 
incoming signal and the replica in their role as shown in 
Figure 5. This will not introduce the unwanted artifacts as 
illustrated in Figure 2. 

LONG AND APERIODIC CODES 

GPS precision code or its encrypted version, denoted by 
P(Y)-code, is very long (exactly one week), with a high 
chipping rate (10.23Mcps), and practically non-repetitive. 
The proposed GPS modernization signal M-code is 
cryptographic in nature and will never repeat. Both P(Y)-
code and M-code were not originally designed for direct 
acquisition and their acquisition rather relies upon the 
handover from an acquired C/A-code. The latter reduces 
the time uncertainty to within a fraction of a C/A-code 
chip, thus rendering the post-handover search of P(Y)-
code or M-code possible.  

However, direct acquisition of P(Y)-code and M-code 
becomes indispensable when the C/A-code is totally 
jammed, spoofed, or disabled. Unless guided by an ultra 
stable atomic clock, the conventional sequential “point” 
search (one code phase per pre-detection interval at a time) 
is too slow particularly under large time and frequency 
uncertainty. Block search, which tests on a large number of 
code phases and Doppler bins simultaneously in parallel, 
on the other hand, becomes the preferred choice. Both 
“hard” and “soft” parallelisms have been proposed. The 
adaptation of FFT from periodic to very long code 
sequences is just an example of the attempts to soft 
parallelism [Yang, Vasquez, and Chaffee, 1999b]. 

For a long or an aperiodic code sequence, one can only 
work with a subsequence of it. If the data bit sign reversal 
is out of concern, one can freely select the number of 
samples per correlation so that a radix-2 or 4 FFT can be 
applied directly. A typical design procedure takes the 
following steps [Yang, 2001a]. First, one selects the length 
of incoming signal segment, M, long enough for the 
correlation integration to produce the needed processing 
gain under normal signal conditions. One then selects the 
length of replic segment, N >> M, generated around the 
estimated time encompassing the entire uncertainty 
interval as a search window large enough to surely contain 
the incoming signal segment. Finally, one implements a 



search algorithm that can efficiently find the incoming 
signal block M out of the extended replica segment N. 
Several search algorithms are described below. 

A mathematical model is first established with the help of 
Figure 6. The true signal time tS is assumed to surely fall 
within the time uncertainty interval TU around the 
receiver time estimate tR. To find where this unknown tS 
lies within the uncertainty interval TU, a segment of 
incoming signal starting at tS will be correlated 
successively with replica segments whose starting point, 
denoted by ti, is selected somewhere within TU. The 
starting point of the replica segment that produces the 
maximum correlation exceeding a threshold will be taken 
as the best estimate of tS. 
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Figure 6. Direct Acquisition under Large Uncertainty 

As shown in Figure 6, the incoming signal samples can be 
collected into a vector X = [x1, x2, …, xM]. In order to 
cover the entire uncertainty interval, the total number of 
samples generated for the code replica is N = TUfs + M, 
where fs is the sampling rate. Putting all replica samples 
into a vector gives Y = [y1, y2, …, yN]. In total, there are 
N-M segments of replica within the uncertainty interval, 
each starting at a different sample. Denote each replica 
segment starting at ti by Yi = [yi, yi+1, …, yi+M-1] that will 
be correlated with the signal segment X. The resulting 
correlations over the entire uncertainty interval can also 
be put into a vector Z = [z1, z2, …, zN-M], where zi is the i-
th correlation between Yi and X.  

The above operations can be put into the matrix form as 
given in Eq.(3). In Eq.(3a), the replica matrix is generated 
by augmenting each segment vector in each row to the 
full replica vector in a circular manner. The dimensions 
are thus changed from (N-M)×M  to (N-M)×N. The X 
vector is also zero-padded with its dimension increased 
from M to N.  

Eq.(3b) is an alternative representation in which an 
incoming signal matrix of dimensions (N-M)×N is 
generated by first zero-padding the X vector from M to N 
and then consecutively shifting it in a circular manner for 
142
each row. The replica vector is just Y for all the replica 
codes generated in the uncertainty interval. 
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Scheme 1: Full Interval Correlation (Incoming Signal 
Augmentation) 

The ideal solution is to evaluate the full interval 
correlation as given in Eq.(3). It amounts to N-M 
correlations of length M and the total number of 
multiplications involved is on the order of (N-M)×M2. 
With hard parallelism, the full interval correlation can be 
calculated with N-M correlators at once or with a smaller 
number of correlators several times. Similarly, it can also 
be calculated with parallel matched filters. 

The full interval correlation can be implemented with soft 
parallelism. To see this, denote the zero-padded incoming 
code vector X by X .  The Z vector of circular correlation 
between X  and Y can be calculated with FFT in one of 
the following two ways: 

 Z = Y⊗ X = IFFT{FFT{ X }°FFT*{Y}}  (4a) 

 = X ⊗ Y = IFFT{FFT{Y}°FFT*{ X }} (4b) 

where ⊗ stands for circular correlation, ° multiplication 
per frequency bin, and * complex conjugate. 

Given the proper choice of M and N, this full interval 
search will reach the correct solution for a single 
incoming segment. The number of multiplications 
required for calculating all correlations changes from (N-
M)×M2 to 2Nlog2(N)+Mlog2(M)+N, thus producing 
considerable computation-saving when N and M are 
large. The pruning FFT can be used to cut off those 
butterfly branches corresponding to zero-padded inputs, 
further reducing computation load [Yang, 2001b]. 

The full interval correlation offers a deterministic 
behavior. However, taking on the full uncertainty interval 
in a single block requires computation that may be 
formidable even with FFT, although it may be useful for 
near real-time or post-processing. By the random nature 
of timing uncertainty, the true value may lie anywhere in 
the interval and the full search from one end to the other 
undiscriminatorily seems wasteful. 



Scheme 2: Extended Replica Folding 

Instead of augmenting the incoming code segment from X 
of small M to X of large N as in Eq.(3b), an alternative 
technique for simultaneous search over the entire 
uncertainty interval is to reduce the local code replica from 
Y of large N to a vector of small M. This is the extended 
replica folding technique described in [Yang, Vasquez, and 
Chaffee, 1999b; Yang et al., 2000]. 

To illustrate, a simple example is shown in Figure 7. An 
incoming signal segment is assumed to have four chips 
denoted by a, b, c, and d, from time t to t+T. The arrival 
time of the incoming signal is only known by an estimate, 
t , with uncertainty ∆. To cover the entire uncertainty 
search interval, the local code is generated from t -∆ to 
t +∆+T. As shown, the extended code replica has five 
segments and each segment has four chips (ai, bi, ci, and di, 
for i = 1,2,3,4,5). The five segments are then folded into a 
single segment with four new chips being given by 

 a  = a1 + a2 + a3 + a4 + a5 (5a) 

 b  = b1 + b2 + b3 + b4 + b5 (5b) 

 c  = c1 + c2 + c3 + c4 + c5 (5c) 

 d  = d1 + d2 + d3 + d4 + d5 (5d) 

The folded replica segment is then circularly correlated 
with the incoming segment, resulting in four possible 
correlations between (a, b, c, d) and ( a , b , c , d ), ( b , c , 
d , a ), ( c , d , a , b ), and ( d , a , b , c ), respectively. If 
the cross-correlation among the sequences is ideally zero, a 
correlation peak occurs at the third position in the folded 
segment. The matched replica (c3, d3, a4, b4) can then be 
distinguished from other three sequences (c1, d1, a2, b2), (c2, 
d2, a3, b3), and (c4, d4, a5, b5) by simple correlation check.  

The extended replica folding technique introduces a self-
inflicted loss of SNR due to folding and an ambiguity in 
folds that needs to be resolved. However, the length of 
FFT used in the extended replica folding technique is 
much shorter than that of the full interval correlation 
technique. When the ratio of the number of chips in each 
segment M over the number of segments N is large in the 
order of hundreds and even thousands, computational 
advantage is pronounced: it reduces the number of 
correlations from the order of MN to the order of M+N. 

Scheme 3: Overlap and Add (Superposed Addition) 

There are two classic approaches to split convolution 
between two sequences, one being much longer than the 
other [Kunt, 1986]. The first is the overlap and add (or 
superposed addition) technique to be described in this 
section and the other is the overlap and discard (or 
juxtaposition) technique to be presented in the next 
section. Both are adapted here for use in our GPS 
applications for correlation. 
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Figure 7. Extended Replica Folding Technique 

As shown in Figure 8, the extended replica sequence is 
divided into small segments of length L. Each segment L 
is then pre-appended with N-L zeros so that the incoming 
segment of length M do not overlap (i.e., N-L > M) when 
using an N-point FFT. It is also possible to post-append 
zeros to the replica segment. 

The circular correlation function produced by FFT for 
each segment has three different sections: the first M-1 
and last M-1 points represent partial correlations while the 
middle N-2M-2 is the full correlation. 

The last section of M-1 points of one segment can be 
combined by addition with the first section of M-1 point 
of the next segment immediately behind it to reconstruct 
the full correlation for this section. The partial correlation 
sections in consecutive segments overlap and they add up 
to the full correlation, hence the name “overlap and add”. 
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Figure 8. Overlap-and-Add Algorithm 

 

Scheme 4: Overlap and Discard (Juxtaposition) 

The overlap-and-discard algorithm described in this 
section is adapted from the overlap-and-save algorithm 
used for convolution with FFT. It differs from the 
overlap-and-add algorithm of the last section in that, 
rather than padding with zeros, it overlaps the data 
sequences within the circular FFT. The overlapped 
portion is to be discarded, hence the name. 

As shown in Figure 9, two consecutive replica segments 
overlap by M-1 points. At the output of the FFT 
correlation of the first segment, the first N-M+1 points are 
full correlations to keep whereas the last M-1 points are 
partial correlations with unwanted sum to discard. The 
full correlations for these discarded M-1 points in this 
segment are later on supplied by the overlapped M-1 
points in the second segment. 

When N = 2M plus a number of zeros padded to a power 
of two or four, this overlap-and-discard algorithm reduces 
to the double length zero-padding FFT scheme shown in 
Figure 5 for linear correlation at arbitrary length. 
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Figure 9. Overlap-and-Discard Algorithm 

 

The above four schemes all work on a single incoming 
signal segment and an extended replica segment. If the 
SNR is high enough and the computation can be 
completed within the time line, the direct instantaneous 
acquisition is achievable. 

However, the number of code phases that can be included 
within a single segment and thus searched simultaneously 
cannot be increased unlimitedly due to physical 
constraints. When the uncetainty is large, not all code 
phases can be covered at once and multiple segments 
have to be used. In addition, for weak signals the coherent 
predetection integration interval cannot be increased 
unlimitedly either because of unknown Doppler frequency 
or otherwise the deadtime between integrations is 
excessive. This is also true when a large number of 
integrations is accumulated over time to produce a 
processing gain sufficient to burn through a heavy 
jamming. These situations necesitate a sequential search 
of multiple incoming signal segments with their 
corresponding extended replica segments over time. 

The four schemes described above can be used as a 
correlation engine in sequential block search. To do so, a 
bidirectional strategy is suggested in [Yang, 2001a], 
which manages multiple incoming signal and replica 
segments in an efficient manner across a large uncertainty 
interval. Furthermore, its nonlinear coverage with 
memory places the search window in a distribution 
4



similar to the initial time estimate. As such, larger 
processing gains are given to more probable events. As a 
result, a higher probability of detection and a smaller 
mean time to acquisition are expected. 

Another technique involving multiple incoming signal 
and replica segments is the polyphase filter [Abusalem 
and Harris, 1999], also called the weighted overlap and 
add algorithm [Crochiere and Rabiner, 1983]. It has been 
implemented for better frequency-domain processing in 
interference suppression among others. 

PUNCTURE ACQUISITION (PA) CODES 

GPS modernization signals set forth several aiding codes 
in transition to M-code acquisition [Barker et al., 2000]. 
One option is to puncture each never-repeating 
cryptographic code and fill in it with a directly acquirable 
code in such a manner that the replacement pattern carries 
the timing information. 

Although a matched filter is a suitable hardware solution, 
the FFT-implemented circular correlation can accomplish 
the same task. As a reverse problem of looking for an 
incoming signal segment in the extended replica, the 
puncture acquisition now searches for a known sequence 
in the incoming signal stream. 

However, the puncture code shows up in the incoming 
signal stream only once in a while. As a result, it has to be 
treated as an aperiodic code using linear correlation and to 
use an extended incoming segment so as to ensure the 
puncture code within the window whenever it appears. 

The four FFT acquisition schemes described in the 
previous section can be applied for acquiring a puncture 
code. This is quite similar to the acquisition of a preamble 
for data sync in general communications but the FFT here 
implements soft parallel search in this case.  

The technique can be extended to acquiring multiple short 
codes in different frequency bands simultaneously or 
hopping between these bands. Once these codes are 
acquired, their presence in the time-frequency map can be 
further processed to extract the timing information among 
others. 

OVERLAID CODES 

By overlaid codes, we mean the received signal is made 
up of many delayed and weighted copies of the same 
original code. Mathematically, the overlaid code s(t) can 
be written as 

∑
=

−+=
K

k
kk tctcts

1

)()()( τα + n(t) (6) 

where c(t) is the primary code, (αk, τk) are the complex 
amplitude and delay experienced by the k-th code copy, 
and n(t) is the noise. The number of copies K and their 
parameters are assumed to be constant over a brief time 
interval but vary over time. 
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We have identified three practical situations in which a 
code may lie over itself multiple times. The first situation 
is the well known multipath phenomena in which each 
delay τk is typically within one code chip while each 
weight  |αk| is less than one. Multipath degrades the code 
tracking performance because of the random time bias it 
introduces. It has been shown that narrow correlator 
spacing can improve code-tracking performance against 
multipath [van Dierendock, Fenton, and Ford, 1992]. A 
large amount of closely spaced correlators have also been 
used for multipath estimation and mitigation [Townsend, 
Fenton, and van Nee, 1995]. 

Equivalent to the hardware correlator spacing is the 
resolution of FFT-implemented correlation, which is 
related to the sampling interval. Since FFT correlation 
provides not only the entire correlation function but also 
its spectrum, it is suited for multipath estimation and 
mitigation so long as the correlation function is available 
with sufficient resolution. The correlation resolution can 
be improved by increasing the sampling rate. This, 
however, inevitably increases the computation load.  An 
alternative way to increase the correlation resolution is to 
zero pad the correlation spectrum before taking its inverse 
FFT. Some spectral processing techniques may also be 
applied to mitigate multipath. 

The second situation is the use of ocean-reflected GPS 
signals for geophysical remote sensing. Sea surface 
reflected GPS signals were first observed in surprise as 
undesirable [Auber, Bibaut, and Rigal, 1994]. The 
potential of these signals was quickly recognized 
[Katzberg and Garrison, 1996]. Water surface-reflected 
GPS signals can serve as a free illumination for bistatic 
remote sensing for geophysical study and for passive 
altitude determination. Recent progresses can be found in 
[Komjathy et al, 2001]. 

The ocean-reflected GPS signals can be viewed as a 
useful multipath in contrast to the harmful multipath 
discussed above. In this case, the reflected signals are 
primarily left hand circularly polarized (LHCP) compared 
to the right hand circularly polarized (RHCP) direct 
signals. The weights  |αk| are still less than one but some 
of the delays τk can be as large as a dozen of code chips. 
This requires careful selection of the segment length large 
enough to cover the extended code delay. 

FFT can be used to produce the delay-Doppler map of the 
correlation power over the desired code chips and 
Doppler bins [Yang, Muskat, and Garrison, 2000]. In fact, 
FFT implementation is much more efficient than a 
hardware correlators-based approach. It can also be used 
to perform blind search for the reflected signals over a 
large time interval [Lowe et al, 2000]. 

The third situation is the presence of spoofing signals. In 
navigation warfare, the in-the-air GPS signals may be 
received, amplified, and rebroadcast by a stationary or 
mobile transmitter. Locally generated GPS look-alikes 



may also be aired. As a result, in the GPS signal 
bandwidth there may contain multiple copies of the same 
code for a given SVN, differing in time and Doppler, to 
confuse or overwhelm unprotected users. 

The weights |αk| associated with spoofing signals may be 
much stronger than the true signal and their delays τk can 
be positive (later) or negative (earlier). The use of an 
FFT-implemented circular correlation as described in this 
paper allows for easy detection and acquisition of the 
spoofing signals if present. It is then followed by tracking 
in pseudo ranges and range rates and ultimately in 
geocentric position to identify and locate the spoofers. 

CONCLUSIONS 
This paper presented a study of FFT-implemented circular 
correlation for direct acquisition of GPS codes, including 
periodic C/A-code, extra long P(Y)-code, never-repeating 
M-code, puncture acquisition code, and overlaid codes. 

As circular correlation, FFT is directly applied to 
extended replica folding of long codes and periodic codes 
when navigation data bit does not reverse its sign in the 
midst of integration. All other codes, however, necessitate 
linear correlation. The overlap-and-add and overlap-and-
discard algorithms were presented for that purpose.  

Computation issues such as sampling rate, zero padding, 
commensurability ratio, and complex FFT were 
discussed. Selecting the FFT length for overlaid codes 
and zero padding to a power of two or to increase 
resolution were other practical yet important design 
aspects to consider. 

Jamming or co-located RF interference is another serious 
problem for acquisition. Although not discussed 
explicitly, the FFT acquisition schemes presented in this 
paper are compatible with the frequency-domain jamming 
suppression and Doppler removal approaches [Yang, 
Vasquez, and Chaffee, 1999a]. The zoom and pruning 
FFT techniques [Yang, 2001b] can be employed in these 
acquisition schemes to further reduce computation load.  

For weak signals or under wideband jamming, an 
extended coherent and/or incoherent integration may be 
employed to boost the signal to noise ratio. However, it 
requires an extra care to handle both the carrier and code 
Doppler effects as well as receiver clock errors during the 
prolonged integration. The cyclostationary property of 
GPS signals can also be exploited for this purpose. The 
present acquisition schemes can be extended to such weak 
signal cases for coherent and/or incoherent integration. 
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