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Abstact

A GPS receiver has been developed that runs 12 tracking

channels in real-time using a software correlator. This

work is part of an effort to develop a flexible receiver that

can use new GPS signals as they become available with-

out the need for new correlator hardware. The receiver

consists of an RF front-end, a system of shift registers,

a digital data acquisition (DAQ) card, and software that

runs on a 1.73 GHz PC. The commercial RF front-end

down converts the signal into a 2-bit digital data stream

at 5.714 MHz. The shift registers parallelize the magni-

tude and sign data bit streams into separate words, which

the DAQ reads into the PC’s memory using direct mem-

ory access. The PC performs base-band mixing and PRN

code correlations in a manner that directly simulates a

hardware digital correlator. It also performs the usual

signal tracking and navigation functions, under the con-

trol of a real-time Linux operating system.



The software correlator receives frequency commands for

simulated carrier and code NCOs and, in effect, uses these

to reconstruct carrier and code replicas which it mixes

with the input data stream. The resulting signals are

summed to produce the standard in-phase and quadra-

ture, prompt and early-minus-late accumulations. These,

along with the phases of the 2 NCOs, are sent back to the

part of the code that executes the tracking loops and the

navigation functions. The contributions of this work are

a set of special high-speed algorithms for doing the corre-

lations in software. They make use of bit-wise parallelism

so that a single C-code command (partially) processes 32

samples at a time.

This system has been tested using a roof-mounted an-

tenna. When operating with 12 channels, the entire re-

ceiver uses less than 50% of the capacity of the 1.73 GHz

processor and navigates to an accuracy of 10 meters.

Introduction

A real-time software receiver architecture can provide GPS

user equipment with operational flexibility that will prove

more and more useful as time goes by. The current GPS

system is slated to expand its capabilities to include new

civilian codes on the L2 frequency and a new L5 fre-

quency. A receiver that uses a hardware correlator will

require hardware modifications in order to use these new

signals. In the near term, a receiver designer will be faced

with a complex trade-off in order to decide whether the

extra complexity is worth the improved performance that

will accrue only very slowly as new GPS satellites replace

older models. A software receiver can use new signals

without the need for a new correlator chip. New frequen-

cies and new pseudo-random number (PRN) codes can be

used simply by making software changes. Thus, software

receiver technology will lessen the risks involved for de-

signers during the period of transition to the new signals.

Furthermore, a software receiver could be reprogrammed

to use the Galileo system, GLONASS, or both, which

provides an added benefit from the use of a software ra-

dio architecture. Thus, there are good reasons to develop

practical real-time software GPS receivers.

A GPS receiver can be broken down into various compo-

nents (see Figure 1). First, an antenna, possibly followed
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Figure 1: A typical GPS receiver with special purpose
hardware and general hardware separated.

by a pre-amp, receives the L-band GPS signals. After the

antenna comes an RF section that filters and down con-

verts the GHz GPS signal to an intermediate frequency in

the MHz range. The RF section also digitizes the signal.

The next section is the correlator chip that separates the

signal into different channels allocated to each satellite.

A modern receiver has 10 or more channels. For each

satellite, the correlator mixes the Doppler shifted inter-

mediate frequency signal to base-band and correlates it

with a local copy of a PRN code. The final components of

the receiver involve software routines that track the sig-

nals, demodulate the navigation message, and compute

the navigation solution.

A software receiver differs from a standard receiver in

one very distinct way (see Figure 2). The functions of

the correlator chip are moved to software running on a

general purpose processor. Doing so changes the com-

ponents and layout of the receiver. The RF front-end

is repackaged into a device called a bit-grabber, which

outputs a binary bit-stream. A data buffering and acqui-

sition system reads the bit-stream into a computer. The

bit-stream is then available for processing by a software

correlator running on the PC’s processor.

The notion of a software GPS receiver has been around for

several years. In the recent past, GPS software receivers

have been developed that either post-process stored sig-

nals or operate in real-time. Previous real-time software

receivers function with a limited number of channels (4-

6) and require high-end computer speeds or DSP chips

[Akos et al., 2001a and Akos et al., 2001b]. The work pre-

sented in this paper improves upon these previous works

in two ways. First, the software receiver discussed here is
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Figure 2: A typical GPS software receiver showing the separation between special purpose hardware and general
hardware.

approximately 3 times faster than the results presented

in Akos [2001a], thus enabling a 12-channel receiver. Sec-

ond, this paper fully explains the algorithms used to com-

pute the correlation accumulations that are required for

acquisition and tracking.

The remaining portions of this paper explain the internal

workings of a 12-channel real-time GPS software receiver

and present experimental performance results for this sys-

tem. The second section describes the hardware includ-

ing the bit-grabber and PC. The third section reviews the

structure of spread-spectrum signals and methods of ac-

quisition and tracking. The next section presents a short

description of an existing PC-based GPS receiver that has

been modified to develop the present receiver. The fifth

section presents an overview of the software correlator

design. Section 6 gives a lengthy description of the math-

ematics behind base-band mixing and correlation leading

into the implementation used in the software correlator.

Section 7 discusses timing and measurements made by the

software correlator. Section 8 describes how to keep all

of the calculations in integer format. Section 9 presents

some performance results. Section 10 gives a summary

and concluding remarks.

System Configuration

Central to the software GPS receiver is the personal com-

puter. The current system consists of a PC with a 1.73

GHz AMD Athlon processor running the RT-Linux op-

erating system. RT-Linux is a hard real-time variant of

Linux implemented as a set of patches to the standard

Linux kernel. Due to its real-time optimized design, RT-

Linux provides very low latency interrupt responsiveness

along with the ability to execute threads at regular inter-

vals. This translates into a highly efficient and responsive

operating system that reliably executes time critical code.

An additional feature of RT-Linux is that it keeps the

functionality of Linux by running the kernel as the lowest

priority thread. By retaining the functionality of Linux,

it is very easy to develop, test, debug, and run real-time

software. Another benefit of using Linux is that tools

such as drivers, a C complier, and text editors are readily

and freely available.

The next component of the software receiver is the bit-

grabber. The bit-grabber consists of a Mitel GP2015

RF front-end. The front-end down converts the nominal

1.57542GHz GPS signal to an intermediate frequency of

(88.54/63) × 106 Hz ∼= 1.4053968254MHz and then per-

forms analog-to-digital conversion. The resultant, digi-

tized signal has two binary bits per sample corresponding

to a sign and a magnitude. The possible values for the

digitized signal are ±1 and ±3. Table 1 shows how to

convert the binary sign and magnitude bits into integer

values. The two binary bits are available as outputs from

the bit-grabber. In order to provide accurate timing, the

sign and magnitude bits are synchronized to a (40/7)×106

Hz ∼= 5.714 MHz clock signal, which is the third output

from the bit-grabber card.

Another type of bit-grabber which uses a direct ADC

down conversion implementation has also been used. The

heart of this bit-grabber is an analog-to-digital converter

that can function with an input bandwidth of up to 2

GHz and that can perform 8-bit conversion at continuous

sample rates up to 1 GHz. The ADC samples the GPS

signal at 5.714 MHz, which aliases the L1 carrier down



to a nominal frequency of ∼= 1.722 MHz. Each 8-bit sam-

ple gets processed by a separate logic unit to create sign

and magnitude pairs with an appropriate input gain that

minimizes the signal-to-noise ratio’s digitization loss.

Sign Mag Value
0 0 -1
0 1 -3
1 0 +1
1 1 +3

Table 1: Sign and magnitude combinations of the input
GPS signal.

A data acquisition system reads the digitized sign and

magnitude bits from the bit-grabber into the PC. To make

the process of reading data into the PC more efficient and

to prepare for efficient correlation calculations, the DAQ

card reads 32 bits of buffered samples at a time. The 32

bits consists of 16 sign bits and 16 magnitude bits. A se-

ries of shift registers buffer the data, packing the sign and

magnitude bits into separate 16-bit words. A divide-by-16

counter converts the 5.714MHz clock down to 357.14KHz,

which provides a signal indicating when the buffer is full.

The data acquisition system consists of a PC card and

driver software. The card is a National Instruments PCI-

DIO-32HS digital I/O card. Pertinent features of this

card are the 32 digital input lines, direct memory ac-

cess (DMA) and availability of a driver for RT-Linux. A

suite of open source drivers and application interface soft-

ware for DAQ cards known as COMEDI (COntrol and

MEasurement and Device Interface) is freely available.

COMEDI provides Linux/RT-Linux support for nearly

one hundred DAQ cards spanning numerous manufactur-

ers. One of the strong points of COMEDI is that it in-

cludes very general drivers, which are easily modifiable

for specific applications. The demands of the software re-

ceiver necessitate certain modifications to the stock COMEDI

driver for the PCI-DIO-32HS card. The modifications in-

clude increasing the number of input bits from 16 to 32,

enabling DMA, and modifying the driver to support con-

tinuous interrupt-driven acquisition.

The software receiver is written entirely in C-code using

tools available from standard Linux distributions. To pro-

mote portabilility of the software, no processor-specific

assembly language or special instructions are used.

Review of the GPS Spread Spec-

trum Signal and Receiver Correla-
tions

The received time-domain L1 coarse/acquisition (C/A)

signal that gets output by the RF front-end is:

y(ti) =
∑

j

AjDjkCj

[

0.001

(

ti − τjk
τjk+1 − τjk

)]

×

cos[ωIF ti − φj(ti)] + nj

(1)

where ti is the sample time, Aj is the amplitude, Djk is

the navigation data bit, Cj [t] is the C/A code, τjk and

τjk+1 are the start times of the received k
th and k + 1st

C/A code periods, ωIF is the intermediate frequency cor-

responding to the L1 carrier frequency, φj(ti) is the car-

rier phase perturbation due to accumulated delta range,

nj is the receiver noise, and the subscript j refers to a

particular GPS satellite. The summation is over all vis-

ible GPS satellites. The negative sign in front of φ(ti)

comes from the high-side mixing that occurs in the RF

front-end that has been used.

A GPS receiver works with correlations between the re-

ceived signal and a replica of it. The correlations are

used to acquire and track the signal. The replica is com-

posed of two parts, the carrier replica and the C/A code

replica. Two carrier replica signals are used, an in-phase

signal and a quadrature signal. When mixed with the

code replica they form the in-phase and quadrature repli-

cas:

yIj(ti) = Cj

[

0.001

(

ti − τ̂jk
τ̂jk+1 − τ̂jk

)]

×

cos{ωIF ti − [φ̂jk + ω̂Doppjk(ti − τ̂jk)]}

(2)

yQj(ti) = −Cj

[

0.001

(

ti − τ̂jk
τ̂jk+1 − τ̂jk

)]

×

sin{ωIF ti − [φ̂jk + ω̂Doppjk(ti − τ̂jk)]}

(3)



where equations (2) and (3) apply during the kth C/A

code period. In these equations τ̂jk and τ̂jk+1 are the

receiver’s estimates of the start times of the kth and k+1st

code periods, φ̂jk is the estimated carrier phase at time

τ̂jk, and ω̂Doppjk is the estimated carrier Doppler shift

during the kth code period.

A typical receiver computes the estimates τ̂jk, τ̂jk+1, φ̂jk,

and ω̂Doppjk by various means that are described in [Van

Dierendonck, 1996]. These include open-loop acquisition

methods and closed-loop signal tracking methods such as

a delay-locked loop to compute τ̂jk and τ̂jk+1 and a phase-

locked loop or a frequency-locked loop to compute φ̂jk

and ω̂Doppjk. The software receiver developed here uses

standard techniques for forming these estimates. These

techniquires are not discussed in detail here.

The receiver uses the carrier and code replicas to com-

pute the following in-phase and quadrature correlation

accumulations:

Ijk(∆) =

ik+Nk
∑

i=ik

y(ti)Cj

[

0.001

(

ti +∆− τ̂jk
τ̂jk+1 − τ̂jk

)]

×

cos{ωIF ti − [φ̂jk + ω̂Doppjk(ti − τ̂jk)]}

(4)

Qjk(∆) = −

ik+Nk
∑

i=ik

y(ti)Cj

[

0.001

(

ti +∆− τ̂jk
τ̂jk+1 − τ̂jk

)]

×

sin{ωIF ti − [φ̂jk + ω̂Doppjk(ti − τ̂jk)]}

(5)

where ik is the index of the first RF front-end sample

time that obeys τ̂jk ≤ tik and Nk +1 is the total number

of samples that obey τ̂jk ≤ ti < τ̂jk+1. The time offset

∆ causes the replica PRN code to play back early if it

is positive and late if ∆ is negative. One of the main

contributions of the present work is developing an efficient

technique for the receiver to accumulate Ijk and Qjk in

software.

Use of Previously Existing GPS Re-

ceiver Software

Previous work is important to the implementation of this

real-time GPS software receiver. The Mitel GPSArchi-

tect GPS receiver was ported to RT-Linux [Ledvina et al.,

2000] and is herein referred to as Cascade. The Cascade

GPS software coupled with the Mitel chipset (GP2015 RF

front-end and GP2021 correlator) on an ISA card forms a

GPS receiver for the PC. Since Cascade provides standard

GPS functions (signal tracking, data demodulation, navi-

gation solution, etc.) and is designed to interact with the

GP2021, it is included as part of the real-time software

receiver. Thus, no new developments have been needed

for standard receiver functions such as code and carrier

frequency steering during acquisition and tracking.

The software correlator is an independent RT-Linux mod-

ule. The interface for interacting with this module has

been designed to be similar to that of a hardware cor-

relator. In fact, the software correlator closely mimics

the GP2021 correlator in order to allow the Cascade GPS

software to be merged with the software correlator. When

using a hardware correlator, the receiver software inter-

acts via I/O memory to read from and write to the cor-

relator’s registers. The software correlator uses an anal-

ogous strategy by implementing a shared memory buffer

that both the correlator and the Cascade software can

access. The memory buffer is implemented using the

“mbuff” driver included with RT-Linux. This driver is

ideal for real-time situations since it allows sharing of

memory between kernel modules and restricts the Linux

kernel from swapping the shared memory space to disk.

Thus, the software correlator has been designed as an in-

dependent module that interacts with other parts of the

receiver according to well defined interface specifications.

This modular approach provides flexibility in the internal

workings of the receiver. One benefit of this modularity

is that the mixing methods and correlation routines are

transparent to the other standard software modules. This

enables quick changes in correlator design that do not sig-

nificantly affect other parts of the GPS receiver.

Software Correlator Design

Since a software correlator, as compared to a hardware

correlator, does not process each channel in parallel the

correlator calculations of a multi-channel software receiver

represent a heavy computational burden. Therefore, it is

important to explain the step-by-step process of software



correlation. An outline of the software correlator’s func-

tions that need to be completed every millisecond is given

below.

1. Obtain the most recent carrier and code frequencies

from the acquistion or tracking loops.

2. For each channel, first mix the signal to base-band

using the most recent carrier frequency and the ac-

cumulated carrier phase. Then, compute in-phase

and quadrature prompt and early-minus-late corre-

lations using the most recent code frequency and

the accumulated code phase.

3. Store the prompt and early-minus-late I’s and Q’s

for use by the acquisition or tracking loops.

4. Repeat Steps 1-3 for each channel.

5. If a measurement time (denoted as a tTIC) occurred,

then store the current measurement data including

C/A code phases, epoch counters, carrier phases,

and carrier Doppler shifts.

6. Sleep for the remainder of the millisecond.

An examination of the correlation timing requirements

is in order. To correlate one millisecond of data on 12

channels, computations must be completed in less than

one millisecond. In order to leave computational time for

other aspects of the GPS receiver, it is advisable to limit

the processing of 12 channels to less than 750 microsec-

onds.

Mathematical Methods of Software

Correlation

A correlator has three main functions. First, it mixes a

signal to base-band using the estimated carrier Doppler

shift and carrier phase. Second, it mixes the base-band

signal with a replica of the C/A code using the estimated

code phase and code chipping rate. Third, it sums the re-

sulting signal over a C/A code period. Since the received

L1 signal has an uncertain carrier phase, the correlator

computes both in-phase and quadrature accumulations,

as defined in equations (4) and (5).

Base-Band Mixing

Base-band mixing is a multiplication of an input signal by

a complex exponential where the frequency of the com-

plex exponential approximately matches that of the input

signal. The resultant signal is centered at base-band. A

complex signal can be broken down into cosine and sine

components, resulting in separate in-phase and quadra-

ture components.

In typical terrestrial, marine and aeronautical applica-

tions, the Doppler shift can vary over a ± 10kHz range

about the intermediate frequency. If one wants to imple-

ment a phase-locked loop, then the frequency of the mix-

ing signal must be controllable to within a few millihertz.

Furthermore, the mixing signal must have a continuously

varying phase.

In a hardware correlator, local oscillators generate co-

sine and sine signals that have precise frequency control

and a continuous phase. This strategy is not feasible for

a software correlator. Generating cosine and sine signals

on the fly with the correct frequency and phase would

be too time consuming. Instead, the software correlator

generates cosine and sine signals on a grid of frequencies

off-line. These signals are stored in memory for later re-

call.

A strategy is needed in order to minimize the number

of sine and cosine signals that must be stored. The sig-

nals must be stored on a time grid of points sampled at

the RF front-end sampling frequency of 5.714 MHz, and

the signals must last for a C/A PRN code period, i.e.,

for 0.001 sec. It would take tens of gigabytes of memory

or more in order to brute-force store all frequencies on a

1 mHz grid ranging from −10 KHz to +10 KHz, not to

mention the question of storing a grid of possible starting

phases at each frequency point.

A method has been developed that allows the receiver

to accumulate I and Q values using stored carrier repli-

cas that fall only on a rough frequency grid and that all

start with a phase of zero. The rough frequency grid has a

spacing of 175 Hz, and the resulting storage requirements

are on the order of 323 Kbytes. The resulting accumula-

tions are



Igjk(∆) =

ik+Nk
∑

i=ik

y(ti)Cj

[

0.001

(

ti +∆− τ̂jk
τ̂jk+1 − τ̂jk

)]

×

cos[(ωIF − ωgjk)(ti − t0gjk)]
(6)

Qgjk(∆) = −

ik+Nk
∑

i=ik

y(ti)Cj

[

0.001

(

ti +∆− τ̂jk
τ̂jk+1 − τ̂jk

)]

×

sin[(ωIF − ωgjk)(ti − t0gjk)]

(7)

where ωgjk is the grid frequency that is closest to the

estimated frequency ω̂Doppjk and where t0gjk is the time

at which this carrier replica has zero carrier phase. These

accumulations are then rotated in order to create accurate

approximations of what would have been computed had

the estimated carrier phase time history in equations (4)

and (5) been used:

Ijk(∆) = Igjk(∆)cos(∆φavgjk)

+Qgjk(∆)sin(∆φavgjk)
(8)

Qjk(∆) = −Igjk(∆)sin(∆φavgjk)

+Qgjk(∆)cos(∆φavgjk)
(9)

where ∆φavgjk is the average phase difference between

the grid carrier phase and the estimated carrier phase

averaged over the accumulation interval:

∆φavgjk = ωgjk

(

τ̂jk + τ̂jk+1

2
− t0gjk

)

− φ̂jk

−ω̂Doppjk

(

τ̂jk+1−τ̂jk

2

)

+ ωIF t0gjk

(10)

The validity of equations (8) and (9) is dependent on the

assumption that

1− cos

[

1

2

(

ωgjk − ω̂Doppjk

)(

τ̂jk+1 − τ̂jk

)

]

<< 1

(11)

Given a 175 Hz grid spacing and a nominal C/A PRN

code period of 0.001 sec, the maximum value on the left-

hand side of inequality (11) is 0.04, which respects the

assumed limit.

Note that equations (8) and (9) can be derived from equa-

tions (4) and (5) as follows: First, one adds and subtracts

the carrier phase of the grid signal in the arguments of the

cosine and sine terms into sums of products of cosine and

sine terms. Second, one uses trigonometric identities to

split the cosine and sine terms into sums and products of

cose and sine terms. In each product, one of the terms in-

volves an argument like the arguments in the trigonomet-

ric terms in equations (6) and (7). The other trigonomet-

ric terms are then approximated by either cos(∆φavgjk)

or sin(∆φavgjk). These approximations are valid because

of the inequality in equation (11) and because the aver-

age of sin(ωgjk − ω̂Doppjk)[ti −
1
2
(τ̂jk + τ̂jk+1)] over the

accumulation interval is zero.

A decrease in C/No is expected from using an inexact

frequency. The worst-case decrease is expressed as a func-

tion of the frequency grid spacing ∆f and is given by

∆SNR = 20log10

(

sin(π∆fT )

π∆fT

)

(12)

where ∆f is in units of Hz, and T is the integration pe-

riod. Thus, a ∆f of 175 Hz causes a worst-case SNR loss

of 0.44 dB for T = 0.001 sec.

The cosine and sine signals on the grid are stored with

a 2-bit binary sign and magnitude representation. The

format of this representation is defined in Table 2. This

format assumes that the cosine and sine signals have an

amplitude of 2.4. Figure 3 shows how to sample a sine

wave to generate the optimal 2-bit representation, that

has the minimum least square error.

Sign Mag Value
0 0 -1
0 1 -2
1 0 +1
1 1 +2

Table 2: Sign and magnitude combinations of the stored
intermediate-frequency carrier sine wave.
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Figure 3: Illustration of how to sample a sine wave for a
2-bit representation.

Sign High Mag Low Mag Value
0 0 0 +1
0 0 1 +2
0 1 0 +3
0 1 1 +6
1 0 0 -1
1 0 1 -2
1 1 0 -3
1 1 1 -6

Table 3: Sign, high-magnitude, and low-magnitude com-
binations of the base-band mixed signal.

A simple EXCLUSIVE OR multiplication of sign bits

and a redefinition of data bits accomplishes base-band

mixing. Multiplication of the RF front-end output rep-

resentation of Table 1 by the sine wave representation

of Table 2 yields a result that can take on the values

−6,−3,−2,−1,+1,+2,+3, and +6. These can be repre-

sented by 3 bits according to the scheme in Table 3. The

high magnitude bit of Table 3 is simply the magnitude

bit of the RF front-end output from Table 1, and the low

magnitude bit of Table 3 is the magnitude bit of the base-

band mixing sine wave from Table 2. Thus, these two

magnitude bits are available without the need for com-

putation. The sign bit can be computed by executing an

EXCLUSIVE OR operation between the sign bits of the

Table-1 RF front-end data and those of the Table-2 base-

band mixing signal data. Notice how the sign bit value’s

relationship with the actual sign gets reversed from that

of Tables 1 and 2.

Mixing of the Base-Band Signal with a Lo-
cal C/A Code

Both prompt and early-minus-late correlations are needed

to track the carrier frequency, carrier phase, and code

phase in a GPS receiver. The prompt correlations are

defined by equations (4) and (5) with ∆ = 0. The early-

minus-late correlations are Ijk(∆eml/2) − Ijk(−∆eml/2)

and Qjk(∆eml/2) − Qjk(−∆eml/2), where ∆eml is the

spacing between the early and late PRN code replicas.

A hardware correlator generates in real-time a particu-

lar C/A code replica at the correct Doppler shifted fre-

quency and phase. This approach is too time consuming

in a software correlator. Instead, it is better to generate

the C/A codes off-line and store the C/A code replicas in

a memory table, called the PRN code table. Storing all 32

C/A codes on a 2-dimensional grid of possible phases and

Doppler shifts would require a large amount of memory,

on the order of several gigabytes.

The required amount of storage can be greatly reduced by

making simplifications. First, the prompt code is stored

as a single sign bit. This representation is shown in Table

4. The early-minus-late code, on the other hand, is stored

in a two-bit representation (actually a 1.5 bit representa-

tion). It has a sign bit and a zero-mask bit, as denoted

in Table 5.

Sign Value
1 +1
0 -1

Table 4: Sign bits of the prompt C/A code.

The next simplification in the PRN code table is to ignore

code Doppler shift variations. All signals in the table are

assumed to have zero Doppler shift; i.e., all C/A codes

in the table assume that τ̂jk+1 − τ̂jk = 0.001 sec. The

code phase errors due to this assumption are eliminated

by choosing a replica code from the table whose midpoint



Sign Zero Mask Value
X 0 0
0 1 -2
1 1 +2

Table 5: Sign and zero mask combinations of the stored
early-minus-late C/A code replica.

occurs at the desired midpoint time (τ̂jk + τ̂jk+1)/2. The

only other effect of this assumption is a small correla-

tion power loss, which is no more than 0.014 dB if the

magnitude of the Doppler shift is less than 10 KHz.

The PRN code table must include a selection of phases as

measured relative to the sample times of the RF front-end

outputs. The particular RF front-end that has been used

has a sample spacing of 175 nsec. The PRN code table

includes 14 different phases with respect to these sample

times. This translates into a code phase spacing of 12.5

nsec, which equals a pseudorange measurement digitiza-

tion level of 3.8 m. Thus, the maximum measurement

error is half of this digitization level, or 1.9 m.

The prompt and early-minus-late C/A code replicas can

be mixed with the base-band code by bit re-definitions

and a simple EXCLUSIVE OR operation. Suppose that

one has a 3-bit base-band signal that is represented as in

Table 3 and a prompt replica of the C/A code as repre-

sented in Table 4. Then the product of the two signals

can be found by forming the EXCLUSIVE OR of the two

inputs’ sign bits to produce the sign bit of the 3-bit repre-

sentation given in Table 6. The high and low magnitude

bits of this mixed signal equal the high and low magni-

tude bits of the base-band signal from Table 3. Note that

the Table 6 representation is identical to that of Table 3

except for the inversion in the meaning of the sign bits.

The mixing of the early-minus-late code with the base-

band signal is also accomplished by an EXCLUSIVE OR

operation on the two signals’ sign bits in conjunction with

a transcription of the high magnitude, low magnitude,

and zero mask bits. The resulting representation is given

in Table 7.

Sign High Mag Low Mag Value
0 0 0 -1
0 0 1 -2
0 1 0 -3
0 1 1 -6
1 0 0 +1
1 0 1 +2
1 1 0 +3
1 1 1 +6

Table 6: Sign, high-magnitude, and low-magnitude com-
binations of the fully mixed prompt integrand.

Sign High Mag Low Mag Zero Mask Value
X X X 0 0
0 0 0 1 -2
0 0 1 1 -4
0 1 0 1 -6
0 1 1 1 -12
1 0 0 1 +2
1 0 1 1 +4
1 1 0 1 +6
1 1 1 1 +12

Table 7: Sign, high-magnitude, low-magnitude, and zero-
mask combinations of the fully mixed early-minus-late in-
tegrand.

Bit-Wise Parallel Storage and Accumula-
tions of Correlations.

One can exploit the simple representations of signals in

terms of 1 to 4 bits by using bit-wise parallelism to per-

form the necessary calculations. Bit-wise parallel oper-

ations work with representations of the data that store

successive samples in successive bits of a word. For ex-

ample, 32 samples of the RF front-end output are stored

in 2 32-bit words. One word stores the 32 sign bits of the

32 samples, and the other word stores the 32 magnitude

bits. The stored tables of the base-band mixing cosine

and sine waves have their sign and magnitude bits stored

in separate words, with each 32-bit word storing 32 sign

or magnitude bits that tabulate to 32 successive samples

of the corresponding cosine or sine wave. Similarly, the

stored tables of the prompt and early-minus-late codes

store sign or sign and zero-mask bits in words with each

word storing 32 samples worth of data. By this means the

EXCLUSIVE OR operations that are involved in mixing

operate on 32 samples at a time because the processor has

a bit-wise EXCLUSIVE OR command and other bit-wise



commands that operate in parallel on each of two input

arguments’ 32 bit pairs.

The final operation in the correlation calculations is to

sum the results over all of the samples in a given es-

timated PRN code period. This operation requires ad-

ditional bit-wise parallel operations followed by opera-

tions that form totals over the bits in a given word. This

approach starts by performing bit-wise parallel Boolean

logic for each of the 8 possible values in the right-hand

column of the prompt integrand representations in Table

6. A 32-bit value word is computed for each 32 samples

and each row of Table 6. It contains ones for the sample

times when the actual integrand equals the corresponding

value in the right-hand column of Table 6 and zeros for

the remaining times when the actual integrand does not

equal this value. The 8 value words corresponding to the

8 possible Table-6 values are formed as follows:

MINUSONE = NOT (SIGN)AND

[NOT (HIGHMAG)AND NOT (LOWMAG)] (13)

MINUSTWO = NOT (SIGN)AND

[NOT (HIGHMAG)AND LOWMAG] (14)

MINUSTHREE = NOT (SIGN)AND

[HIGHMAGAND NOT (LOWMAG)] (15)

MINUSSIX = NOT (SIGN)AND

[HIGHMAGAND LOWMAG] (16)

MINUSONE = SIGN AND

[NOT (HIGHMAG)AND NOT (LOWMAG)] (17)

MINUSTWO = SIGN AND

[NOT (HIGHMAG)AND LOWMAG] (18)

MINUSTHREE = SIGN AND

[HIGHMAGAND NOT (LOWMAG)] (19)

MINUSSIX = SIGN AND

[HIGHMAGAND LOWMAG] (20)

These operations can be carried out in 15 binary oper-

ations if one takes advantage of redundancy by storing

common intermediate results.

The operations for the early-minus-late integrand are sim-

ilar. All of the values double in this case, i.e., the MINUS-

SIX word becomes the MINUSTWELVE word. Also,

an additional AND operation must be performed with

the ZERO MASK bits of Table 7 in order to mask out

sample times when the early and late PRN codes cancel

each other. If one takes advantage of the fact that the

early-minus-late HIGHMAG and LOWMAG words are

the same and if one ANDs the zero mask words with the

SIGN and NOT(SIGN) words before ANDing the results

with the HIGHMAG and LOWMAG results, then the

early-minus-late integrands can be computed at a cost of

only 11 additional binary operations.

Additional zero-masking occurs in the first and last words

of an accumulation interval. This is true because the start

and stop times of an accumulation interval do not nor-

mally fall at the boundaries of data words. Therefore,

the bits in the first word that precede the accumulation

interval need to get zero-masked as do the bits in the

last word that come after the end of the accumulation

interval.

The accumulation operation must sum the number of 1

bits in each of the 8 value words. These are no such sum-

mation operations in a standard microprocessor’s instruc-

tion set. Therefore, the summations are accomplished

using a table look-up. The value word is used as the ad-

dress in the memory table, and the table’s output is set

up to deliver the number of 1 values in the address. A

16-bit table has been used. This gives it a memory size

of 216 or 64 Kbytes, which makes it able to fit into the

microprocessor’s cache and allows for very fast execution.

Suppose that this operation is called BITSUM. Then it

can be used to compute the accumulation in equation (6)

as follows:



Igjk(0) = 6 ∗

Nw
∑

l=1

[BITSUM(PLUSSIXjl)

−BITSUM(MINUSSIXjl)]

+3 ∗

Nw
∑

l=1

[BITSUM(PLUSTHREEjl)

−BITSUM(MINUSTHREEjl)]

+2 ∗

Nw
∑

l=1

[BITSUM(PLUSTWOjl)

−BITSUM(MINUSTWOjl)]

+

Nw
∑

l=1

[BITSUM(PLUSONEjl)

−BITSUM(MINUSONEjl)]

(21)

The prompt quadrature and early-minus-late in-phase and

quadrature accumulations can be computed using the same

operations, but with differing value words that corre-

spond to their respective integrands.

Computation Time Savings

The bit-wise parallel operations save computation time

in comparison to integer mathematical correlation oper-

ations. Integer mathematics requires 6 multiplications

and 4 additions per sample (except for the last sample)

in order to form the 4 required accumulations for each

channel. At a sampling rate of 5.714 MHz this trans-

lates into 57136 integer operations per PRN code period.

The bit-wise parallel method uses mostly simple logic and

table look-up operations in order to form the 4 accumu-

lations. It uses 6 EXCLUSIVE OR operations and 52

additional bit-wise logic operations per word. It uses 32

bit summation operations, and 32 additions per summa-

tion word (actually, it only requires 16 summations for the

last word). Suppose that the nominal word length is 32

bits but that the summation words are only 16 bits long.

Then there are 180 words and 360 summation words in a

typical accumulation interval. If one totals the necessary

operations along with some overhead that occurs at the

first and last words, then the new method requires 33496

operations per PRN code period. Thus, there is a sav-

ings of almost a factor of two in the operation count. The

bit-wise method’s logic and table look-up operations may

execute more rapidly than multiplication operations on

a typical micro-processor, which would further increase

the time savings. Additional speed-up may come about

because of a reduced number of accesses to non-cache

memory. The net speed-up is a factor of about 2.1 as

measured on a 1.73 AMD Athlon GHz processor.

Note that this algorithm can be adapted to work with

a different number of bits in the representation of the RF

front-end output and of the cosine and sine mixing sig-

nals. An increase above 2 bits will make the logic more

complex and will decrease the time savings versus straight

integer arithmetic. A decrease to a 1-bit representation

will do the opposite. For example, if the RF front-end

uses one-bit digitization rather than two-bit digitization,

then the operation count will decrease by a factor of al-

most 2 for the new method, which will make it about 4.2

times faster than straight integer arithmetic.

Another method of creating the carrier replicas exists.

This method adds a small computational slow-down to

the software, but reduces the number and length of sig-

nals stored. Instead of storing a millisecond of the carrier

signals on a coarse grid of frequencies, it is possible to

store only the values of cosine and sine over a period of 0

- 2π. Then, to generate the carrier replica, one needs to

compute the argument of the cosine and sine functions in

equations (2) and (3). The 2π modulus of the argument

is then used as the index into the stored cosine and sine

signals. This step adds the extra requirement of comput-

ing the argument in real-time, however, as compared to

storing the signals ahead of time. If the cosine and sine

arguments are specified as floating-point numbers, these

computations produce a significant slow-down. If the ar-

guments are expressed as 64-bit integers, on the other

hand, the overall computational time of the integer-based

correlation algorithms frows by less than 5% in compari-

son to the method that uses a pre-computed grid of car-

rier replicas. This method of generating the cosine and

sine signals is not easily implemented in the bit-wise al-

gorithms because of the additional cost of packing the

representations into bit-wise parallel words after they get

computed.



Storage Requirements

The pre-computed base-band mixing signals and PRN

codes require a certain amount of memory. Each replica

signal must occupy 180 32-bit words in order to be guar-

anteed to cover the full 5714 RF front-end samples that

occur in one PRN code period for any possible code pe-

riod start time within the 32 samples of the initial word.

Thus, 180*4=720 bytes are required for each bit of each

signal that must get stored. The sine and cosine waves

each have two-bit representations, which translates into

a storage requirement of 2880 bytes for the carrier repli-

cas at a given Doppler shift. There are 115 Doppler shifts

that must be stored in order to cover the −10 KHz to +10

KHz range with a 175 Hz grid spacing. This translates

into 323 Kbytes of storage for all of the carrier replica

signals.

The pre-computed PRN codes also require a significant

amount of storage. The prompt code has a 1-bit repre-

sentation, and the early-minus-late code has a 2-bit rep-

resentation. This translates into a total of 2160 bytes

for a single code phase of a single PRN number. The

table must include 14 different code phases per RF front-

end sample multiplied by 32 RF front-end samples per

word, which yields a storage requirement of 945 Kbytes

per PRN code and 30 Mbytes for all 32 PRN codes.

Note that it is possible to reduce these storage require-

ments by a factor of 32 if one does not store different

code replicas for the 32 different possible locations within

a data word of the first RF front-end sample at an ac-

cumulation interval. The memory savings comes at the

cost of additional bit-shifting operations that are needed

in order to 1-bit align the code replica’s start bit with the

estimated start bit in the incoming data word stream.

Experience with the 1.73 GHz AMD Athlon processor in-

dicates that this added computational cost is minimal.

The micro-computer stores the most recent 21 msec of

RF front-end data in a circular buffer. This allows it to

process the differing code periods for different satellites

during different iterations of a regularly scheduled pro-

gram thread. This buffer occupies 30 Kbytes of memory.

Code, Carrier Phase, and Carrier
Frequency Measurements

Navigation calculations require measured values of the

PRN code phase, carrier phase, and carrier frequency.

The measurements for each satellite must occur at the

exact same time. The TIC function provides a periodic

timing scheme to synchronize these measurements at time

tTIC . At time tTIC the TIC function latches all of the

C/A code phases, carrier phases, and carrier frequencies

along with the code epoch counters, and it makes these

available to the remaining GPS receiver software. The

GPS receiver uses the code phase and epoch counters to

compute the pseudorange to each satellite.

The software correlator keeps track of the code and car-

rier phase of each signal as determined by the code chip-

ping rate and the carrier Doppler shift inputs. Suppose

that f̂cjk is the receiver’s estimated code chipping rate for

satellite j during its kth PRN code period and suppose

that ω̂Doppjk is the associated carrier Doppler shift. f̂cjk

will have been determined either by an acquisition search

procedure, or if tracking, by a delay-locked loop. Like-

wise, ω̂Doppjk will have been defined by an acquisition pro-

cedure or, if tracking has commenced, by a phase-locked

loop or a frequency-locked loop. The software correlator

uses these two quantities to update its self initialized code

and carrier phases according to the formulas:

τ̂jk+1 = τ̂jk +
1023

f̂cjk
(22)

φ̂jk+1 = φ̂jk + ω̂Doppjk+1(τ̂jk+1 − τ̂jk) (23)

In this software receiver tTIC occurs at the millisecond

boundaries. At each time tTIC the code phase of each

signal is computed in the following manner (referring to

Figure 4):

ψ̂jTIC = 1023

(

tTIC − τ̂jk+1

τ̂jk+2 − τ̂jk+1

)

(24)

where ψ̂jTIC is the code phase in chips of signal j at time

tTIC . The epoch counters, which are simply a running

total of the number of code periods, are incremented at

each code start/stop time.



Figure 4: A schematic diagram illustrating the code phase measurement.

The carrier phase calculation at time tTIC is similar to

the code phase calculation:

φ̂jTIC = φ̂jk+1 + ω̂Doppjk+1(tTIC − τ̂jk+1) (25)

where φ̂jTIC is the carrier phase at time tTIC of Figure

4. The Doppler shift that gets returned at this time is

ω̂Doppjk+1.

Fixed-Point Computations

Real-time software is fastest when using fixed-point com-

putations. Floating-point operations, such as addition,

multiplication, and division, take much longer than their

integer equivalents. For example, on an AMD Athlon

one floating-point division takes 8 clock cycles while a

fixed-point division takes 4-5 clock cycles. Furthermore,

floating-point variables require more space in memory

than do integer variables. Thus, it is worthwhile to carry

out the majority of the calculations in an integer-based

format. The mixing and correlations are already in in-

teger format, but computations like calculating the code

start/stop times and the angle of rotation for I and Q are

inherently floating-point calculations.

No process exists for blindly converting floating-point com-

putations into fixed-point equivalents. Any reasonable

process includes determining the maximum values and

the desired minimum resolution of the calculations. These

figures help to determine the required sizes of the in-

tegers. Maximum values are important because many

parameters, such as the code start/stop times, increase

continually over time, which makes overflow a concern.

Resolution is important because the required accuracy of

a computation must be maintained when using an integer

format.

As an example, consider the C/A code start/stop times.

The first step is to define how precise the times must be.

This depends on how precisely the pseudorange must be

measured. Assume that the pseudorange must be mea-

sured to within 0.5 meters or ∼= 1.667 nsec. The maximum

value for a 32-bit unsigned integer is 232 ∼= 4 ∗ 109, which

implies that a 32-bit representation of the code start/stop

times would overflow in 7 seconds of operation. Since the

code start/stop times continually increase over time, a

64-bit unsigned integer is more appropriate. A 64-bit in-

teger also allows for an increase in the precision of the

start/stop times. A good compromise between precision

and avoidance of overflow is to count start/stop times in

units of 100’s of picoseconds. In this case overflow will

occur after 58.5 years of continuous operation.

Converting the I and Q rotation angle into a fixed-point

equivalent is more complicated. This is so because of the

continually growing nature of the carrier phase angle and

because of the large intermediate frequency that gets mul-

tiplied by a time in the last term of equation (10). In the

former case, however, modulo arithmetic is useful since

∆φavgjk is modulo 2π, and thus the terms that compose

it can be computed modulo 2π.
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Figure 5: Frequency response of the real-time soft-
ware receiver’s FLL compared with that of a MATLAB
smoother.

Performance Results

A sample screen-shot from the real-time software receiver

is provided in Figure 8. This figure shows the receiver

tracking 9 channels. The antenna used is an L1 an-

tenna with a pre-amp that has 26 dB of gain and is

roof-mounted on Rhodes Hall at Cornell University. The

receiver has a position accuracy on the order of 10-15

meters, which is is comparable to other receivers that use

hardware correlators.

The tracking loop performance of the software receiver

code has been evaluated by comparing it to a software

receiver implemented in MATLAB that uses smoother-

based carrier and code tracking loops and that operates

on the same data in an off-line mode. Figure compares

the Doppler shift of the carrier from the real-time soft-

ware receiver with that of the MATLAB smoother. The

mean frequency error deviation after the transient period

is less than 2Hz. Thus, the real-time software receiver’s

FLL functions properly with the software-computed ac-

cumulations.

It is important to compare the tracking and navigation

performance between the software receiver and a receiver

that uses a hardware correlator. A reciever that uses

the Mitel GP2021 digital hardware correlator was used

for the comparison. This receiver uses the same Cascade

GPS software as the software receiver. Both receivers also

use the Mitel GP2015 RF front-end. The receivers are set

up to run at the same time and are connected to the same

roof-mounted antenna. Performing a simple side-by-side

visual comparison shows that SNR values differ by less

than 1 dB and that the navigation solutions differ by no

more than 5-10 meters.

An important measure of the efficiency of the algorithms

used in the software correlator is the average duration

per millisecond required to base-band mix and correlate

12 channels. The current software correlator requires 390

microseconds, which is a 39% duty cycle. However, the

algorithms are not optimized. We are aware of numerous

increases in speed that will most likely reduce this value

by about 5-10%. Furthermore, as faster PC’s become

available, the processing time will continue to decrease.

It is important to compare the software receiver presented

in this paper with the one presented in Akos et al. [2001a].

A proper comparison gives a sense of the efficiency of

the algorithms implemented in this receiver. Akos et al.

[2001a] show a plot of the required computation time

for their 6-channel software receiver to process 1 second

of GPS data as a function of x86 microprocessor speed.

From the plot, the computation time of the receiver at an

RF front-end sampling frequency of 5.714 MHz on a 1.73

GHz processor is about 1 second. The software receiver

discussed in this paper processes 6 channels in about 0.23

sec. Akos et al. [2001b] mentions a potential speed im-

provement that may decrease the computation time by

30%. Taking this into consideration, the software receiver

described in this paper is still over 3 times faster.

Two different bit-grabbers have been tested with the real-

time software receiver. The first one uses an analog down

conversion scheme, while the other one implements a di-

rect ADC down conversion. Previously, Akos and Tsui

[1996] presented an implementation of a direct ADC down

conversion GPS front-end. To evaluate the front-end,

they stored and off-line processed 3 msec of GPS data.

In contrast, the direct ADC front-end discussed in this

paper has been tested with the real-time software receiver



Lat 42.44354 Spd 0.5 SVs 8 CTrack FLL Date 17/10/02
Lon -76.48143 Hdg 327.0 Nav 3D GDOP 1.9 GPS 19:58:11
Alt 269.6560 ROC -0.7 HI ELEV DO -393.0 OscErr 0.25

CH SV ELV AZI DOPP NCO UERE SF PRerr PRRerr LOCK SNR iS4
1 1 67 237 -528 -927 4 1 9.0 0.7 CCBF 16.9 -1.000
2 22 64 47 -1644 -2045 4 1 14.3 0.6 CCBF 18.0 -1.000
3 3 50 152 2174 1778 2 1 5.5 -0.4 CCBF 18.4 -1.000
4 25 22 106 -2650 -3050 2 1 42.9 0.2 CCBF 13.2 -1.000
5 17 1 62 1722 1331 2 1 7.5 -0.4 CCBF 8.1 -1.000
6 15 2 81 2278 1887 2 1 -5.2 -0.7 CCBF 7.4 -1.000
7 27 12 295 2969 2575 0 1 0.0 0.0 CCBF 8.0 -1.000
8 13 44 303 1856 1866 2 0 0.0 0.0 C 14.9 -1.000
9 31 22 185 3860 3464 2 1 -11.0 -0.5 CCBF 15.9 -1.000
10 – – – – – – - – – – –
11 – – – – – – - – – – –
12 20 4 219 -3086 -3483 2 1 27.5 0.3 CCBF 9.6 -1.000

Table 8: Screenshot of a the software GPS receiver.

and ran continuously for several hours. The performance

results are similar to those of the analog RF front-end.

Summary and Concluding Remarks

A 12-channel real-time software GPS L1 receiver that

runs on a common PC has been implemented and tested.

The hardware consists of an RF bit-grabber card, a data

acquisition system, and a PC with a 1.73GHz AMDAthlon

processor running RT-Linux. The software consists of the

data acquisition code, the software correlator, and GPS

software that provides the typical GPS functions such as

navigation and tracking. The software correlator, running

on the PC’s processor, consumes about 39% of the CPU

capacity, leaving the PC time to perform other tasks. Fur-

thermore, optimizations exist that may decrease the CPU

usage by about 5-10%.

The software correlator algorithms have been tested in

depth. They have been compared to both a hardware cor-

relator and a non-real-time software receiver implemented

in MATLAB. These comparisons show that real-time soft-

ware correlation can be implemented without loss of per-

formance.
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